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Some Worrisome Questions with Useful Answers

What About Expectations and MDPs Were You Afraid to Ask?

Sequential decision problems: The tool of choice is almost always dynamic
programming and the objective is almost always maximization of an expected reward
(or minimization of an expected cost).

In practice, we know dynamic programming often performs admirably. Still, sooner
or later, the little voice in our head cannot help but ask, “What about the Saint
Petersburg Paradox?”

Nub of the Problem: The realized reward of the decision maker is a random variable,
and, for all we know a priori, our myopic focus on means might be disastrous.

Is there an analytical basis for the sensible performance of mean-focused dynamic
programming?

Our first goal is to isolate a rich class of dynamic programs were the mean-focused
optimality also guarantees low variability. This is the bonus to our bargain.

Beyond variance bounds, there is the richer goal of limit theorems for the realized
total reward. In MDPs there are many sources of dependence and their participation
is typically non-linear. This creates a challenging long term agenda. Some concrete
progress has been made.
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Three motivating examples One common question...

Three motivating examples: one common question. . .

Example one: sequential knapsack problem (Coffman et al., 1987)

Knapsack capacity c ∈ (0,∞)

Item sizes: Y1,Y2, . . . ,Yn independent, continuous distribution F

Decision: Viewing Yt , 1 ≤ t ≤ n, sequentially; decide include/exclude

Knapsack policy πn: the number of items included is

Rn(πn) = max

{
k :

k∑
i=1

Yτi ≤ c

}
,

τi , index of the ith item included

Objective: sup
πn

E [Rn(πn)]

π∗n : optimal Markov deterministic policy

Basic Question: What can you say about

Var [Rn(π∗n)] ?
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Three motivating examples One common question...

Three motivating examples: one common question. . .

Example two: quantity-based revenue management (Talluri and van Ryzin, 2004)

Total capacity c ∈ N

Prices: Y1,Y2, . . . ,Yn independent, Yt ∈ {y0, . . . , yη}
dist∼ {p0(t), . . . , pη(t)}

Decision: sell/do not sell one unit of capacity at price Yt

Selling policy πn: total revenues are

Rn(πn) = max

{
k∑

i=1

Yτi : k ≤ c

}
,

τi , index of the ith unit of capacity sold

Objective: sup
πn

E [Rn(πn)]

π∗n : optimal Markov deterministic policy

Basic Question: What can you say about

Var [Rn(π∗n)] ?
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Three motivating examples One common question...

Three motivating examples: one common question. . .

Example three: sequential investment problem (Samuelson, 1969; Derman et al., 1975;
Prastacos, 1983)

Capital available c ∈ (0,∞)

Investment opportunities: Y1, . . . ,Yn, independent, known distribution F

Decision: how much to invest in each opportunity

Investment policy πn: total return is

Rn(πn) =
n∑

t=1

r(Yt ,At),

where r(y , a) is the return of investing a units of capital when Yt = y

Objective: sup
πn

E [Rn(πn)]

π∗n : optimal Markov deterministic policy

Basic Question: What can you say about

Var [Rn(π∗n)] ?
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Three motivating examples What Do We Gain?

What Do We Gain From Understanding Var [Rn(π∗n)] ?

Without some understanding of variability, the decision maker is simply set adrift.
Consider the story of the “reasonable” house seller.

In practical contexts, one can fall back on simulation studies, but inevitably one is
left with uncertainties of several flavors. For example, what model tweaks suffice to
give well behaved variance bounds?

More ambitiously, we would hope to have some precise understanding of the
distribution of the realized reward.

For example, it’s often natural to expect the realize reward to be asymptotically
normally distributed. Can one have any hope of such a refined understanding
without first understanding the behavior of the variance?
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Three motivating examples Good Behavior of the Example MDPs

Good Behavior of the Example MDPs

Theorem (Arlotto, Gans and S., OR 2014)

The optimal total reward Rn(π∗n ) of the knapsack, revenue management and investment
problems satisfies

Var [Rn(π∗n )] ≤ K E [Rn(π∗n )] for each 1 ≤ n <∞,

where

K = 1 in the sequential knapsack problem

K = max{y0, . . . , yη}, the largest price in the revenue management problem

K = sup{r(y , a)} in the investment problem

Heads-Up. The means-bound-variance relations are of particular interest in those
problems where the expectation grows sub-linearly. For example, in the knapsack problem
for random variables with bounded support, the mean is asymptotic to c

√
n.
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Three motivating examples Good Behavior of the Example MDPs

Variance Bounds: Simplest Implications

Coverage Intervals for Realized Rewards

For α > 1,

− α
√

K E [Rn(π∗n )] + E [Rn(π∗n )] ≤ Rn(π∗n ) ≤ E [Rn(π∗n )] + α
√

K E [Rn(π∗n )]

with probability at least 1− 1/α2

Small Coefficient of Variation

The optimal total reward has relatively small coefficient of variation:

CoeffVar[Rn(π∗n )] =

√
Var [Rn(π∗n )]

E[Rn(π∗n )]
≤

√
K

E[Rn(π∗n )]

Weak Law of Large Numbers for the Optimal Total Reward

If E [Rn(π∗n )]→∞ as n→∞ then

Rn(π∗n )

E[Rn(π∗n )]

p→ 1
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Rich Class of MDPs where Means Bound Variances General MDP Framework

General MDP Framework

(
X , Y , A , f , r , n

)
X is the state space; at each t the DM knows the state of the system x ∈ X

I Knapsack example: x is the remaining capacity

The independent sequence Y1,Y2, . . .Yn takes value in Y
I Knapsack example: y ∈ Y is the size of the item that is presented

Action space: A(t, x , y) ⊆ A is the set of admissible actions for (x , y) at t
I Knapsack example: “select”; “do not select”

State transition function: f (t, x , y , a) state that one reaches for a ∈ A(t, x , y)
I Knapsack example: f (t, x , y , select) = x− y; f (t, x , y ,do not select) = x

Reward function: r(t, x , y , a) reward for taking action a at time t when at (x , y)
I Knapsack example: r(t, x , y , select) = 1; r(t, x , y , do not select) = 0

Time horizon: n <∞
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Rich Class of MDPs where Means Bound Variances General MDP Framework

MDPs where Means Bound Variances

Π(n) set of all feasible Markov deterministic policies for the n-period problem

Reward of policy π up to time k

Rk(π) =
k∑

t=1

r(t,Xt ,Yt ,At), X1 = x̄ , 1 ≤ k ≤ n

Expected total reward criterion, i.e. we are looking for π∗n ∈ Π(n) such that

E[Rn(π∗n )] = sup
π∈Π(n)

E[Rn(π)].

Bellman equation: for each 1 ≤ t ≤ n and for x ∈ X ,

vt(x) = E

[
sup

a∈A(t,x,Yt )

{r(t, x ,Yt , a) + vt+1 (f (t, x ,Yt , a))}

]
,

I vn+1(x) = 0 for all x ∈ X , and
I v1(x̄) = E[Rn(π∗n )]
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Rich Class of MDPs where Means Bound Variances Three Basic Properties

Three Basic Properties

Property (Non-negative and Bounded Rewards)

There is a constant K <∞ such that 0 ≤ r(t, x , y , a) ≤ K for all triples (x , y , a) and all
times 1 ≤ t ≤ n.

Property (Existence of a Do-nothing Action)

For each time 1 ≤ t ≤ n and pair (x , y), the set of actions A(t, x , y) includes a
do-nothing action a0 such that

f (t, x , y , a0) = x

Property (Optimal Action Monotonicity)

For each time 1 ≤ t ≤ n and state x ∈ X one has the inequality

vt+1(x∗) ≤ vt+1(x)

for all x∗ = f (t, x , y , a∗) for some y ∈ Y and any optimal action a∗ ∈ A(t, x , y).
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Rich Class of MDPs where Means Bound Variances Main Result: MDPs where Means Bound Variances

MDPs where Means Bound Variances

Theorem (Arlotto, Gans, S. OR 2014)

Suppose that the Markov decision problem (X ,Y,A, f , r , n) satisfies reward
non-negativity and boundedness, existence of a do-nothing action and optimal action
monotonicity. If π∗n ∈ Π(n) is any Markov deterministic policy such that

E[Rn(π∗n )] = sup
π∈Π(n)

E[Rn(π)],

then
Var[Rn(π∗n )] ≤ K E[Rn(π∗n )],

where K is the uniform bound on the one-period reward function.

Some Implications:

Well-defined coverage intervals

Small Coefficient of Variation

Weak law of large numbers for the optimal total reward

Ameliorated Saint Petersburg Paradox Anxiety (but ...)
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Rich Class of MDPs where Means Bound Variances Understanding the Three Crucial Properties

Understanding the Three Crucial Properties

In summary, the variance of the optimal total reward is “small” provided that we have
the three conditions: . . .

Property 1: Non-negative and bounded rewards

Property 2: Existence of a do-nothing action

Property 3: Optimal action monotonicity, vt+1(x∗) ≤ vt+1(x)

Are these easy to check? Fortunately, the answer is “Yes.”
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Rich Class of MDPs where Means Bound Variances Optimal action monotonicity: sufficient conditions

Optimal action monotonicity: sufficient conditions

Sufficient Conditions

A Markov decision problem (X ,Y,A, f , r , n) satisfies optimal action monotonicity if:

(i) the state space X is a subset of a finite-dimensional Euclidean space equipped with
a partial order �;

(ii) for each y ∈ Y, 1 ≤ t ≤ n and each optimal action a∗ ∈ A(t, x , y) one has
f (t, x , y , a∗) ≡ x∗ � x

(iii) for each 1 ≤ t ≤ n, the map x 7→ vt(x) is non-decreasing: i.e. x � x ′ implies
vt(x) ≤ vt(x

′);

Remark

Analogously, one can require that

(ii) x � x∗ ≡ f (t, x , y , a∗);

(iii) the map x 7→ vt(x) is non-increasing: i.e. x � x ′ implies vt(x
′) ≤ vt(x).
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Rich Class of MDPs where Means Bound Variances Optimal action monotonicity: sufficient conditions

Further Examples

Naturally there are MDPs that fail to have one or more of the basic properties used here,
but, there is a robust supply of of MDPs where we do have (1) reward non-negativity and
boundedness, (2) existence of a do-nothing action, and (3) optimal action monotonicity.
For example we have:

General dynamic and stochastic knapsack formulations (Papastavrou, Rajagopalan,
and Kleywegt, 1996)

Network capacity control problems in revenue management (Talluri and van Ryzin,
2004)

Combinatorial optimization: sequential selection of monotone, unimodal and
d-modal subsequences (Arlotto and S., 2011)

Your favorite MDP! Please add to the list.
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Rich Class of MDPs where Means Bound Variances Two Variations on the MDP Framework

Two Variations on the MDP Framework

There are two basic variations on the basic MDP Framework, where one can again obtain
the means-bound-variances inequality. In many contexts one has discounting or
additional post-action randomness, and these can be accommodated without much
difficulty. Specifically, one can deal with

Finite horizon discounted MDPs

MDPs with within-period uncertainty that realizes after the decision maker chooses
the optimal action:

I Such uncertainty might affect both the optimal one-period reward and the optimal
state-transition

I An important example that belongs to this class are stochastic depletion problems
(Chan and Farias, 2009)
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Beyond Means-Bound-Variances: Sequential Knapsack Problem Sharper Focus

Sharper Focus: The Simplest Sequential Knapsack Problem

Knapsack capacity c = 1

Item sizes: Y1,Y2, . . . ,Yn i.i.d. Uniform on [0, 1]

Decision: include/exclude Yt , 1 ≤ t ≤ n

Knapsack policy πn: the number of items included is

Nn(πn) = max

{
k :

k∑
i=1

Yτi ≤ 1

}
,

τi , index of the ith item included

Objective: sup
πn

E [Nn(πn)]

π∗n : unique optimal Markov deterministic policy based on acceptance intervals
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Beyond Means-Bound-Variances: Sequential Knapsack Problem Dynamics

Sequential knapsack problem: dynamics (n = 8)

X1 = .3213 X2 = 0.5423 X3 = 0.4569 X4 = 0.2865 X5 = 0.5635 X6 = 0.2210
X7 = 0.2540 X8 = 0.0318J.M. Steele (Wharton) MDPs Beyond One’s Means April 6, 2017 22



Beyond Means-Bound-Variances: Sequential Knapsack Problem Tight Variance Bounds and CLT

Sequential knapsack problem: Tight Variance Bounds and a Central Limit
Theorem

Theorem (Arlotto, Nguyen, and S. SPA 2015)

There is a unique Markov deterministic policy π∗n ∈ Π(n) such that

E[Nn(π∗n )] = sup
π∈Π(n)

E [Nn(π)]

and for such an optimal policy and all n ≥ 1 one has

1

3
E[Nn(π∗n )]− 2 ≤ Var[Nn(π∗n )] ≤ 1

3
E[Nn(π∗n )] + O(log n)

Moreover, one has that
√

3 (Nn(π∗n )− E[Nn(π∗n )])√
E[Nn(π∗n )]

=⇒ N(0, 1) as n→∞
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Beyond Means-Bound-Variances: Sequential Knapsack Problem Tight Variance Bounds and CLT

Observations on the Knapsack CLT

The central limit theorem holds despite strong dependence on the level of remaining
capacity and on the time period

Asymptotic normality tells us almost everything we would like to know!

Intriguing Open Issue: How is does the central limit theorem for the knapsack
depend on the distribution F . This appears to be quite delicate.

Major Issue:

In what contexts can we get a CLT for the realized reward of an MDP? Is this
always an issue of specific problems, or is there some kind of CLT that is relevant to
a large class of MDPs. The essence of the matter seems to pivot on the possibility
of useful CLTs for non-homogenous Markov additive functionals.
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Markov Additive Functionals of Non-Homogenous MCs — with a Twist

Markov Additive Functionals — Plus m

Here we are concerned with the possibility of an Asymptotic Gaussian law for partial
sums of the form:

Sn =
n∑

i=1

fn,i (Xn,i , . . . ,Xn,i+m), for n ≥ 1

Framework:

{Xn,i : 1 ≤ i ≤ n + m} are n + m observations from a time non-homogeneous
Markov chain with general state space X

{fn,i : 1 ≤ i ≤ n} are real-valued functions on X 1+m

m ≥ 0: novel twist

Why m?
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Motivating examples Dynamic inventory management

Dynamic inventory management I

Model: n periods; i.i.d. demands D1,D2, . . . ,Dn uniform on [0, a]

Decision: ordering quantity in each period (instantaneous fulfillment)

Order up-to functions: if current inventory is x one orders up-to γn,i (x) ≥ x

Inventory policy πn: sequence of order up-to functions

Time evolution of inventory:

Xn,1 = 0 and Xn,i+1 = γn,i (Xn,i )− Di for all 1 ≤ i ≤ n

Cost of inventory policy πn:

Cn(πn) =
n∑

i=1

{
c(γn,i (Xn,i )− Xn,i )︸ ︷︷ ︸

ordering cost

+ ch max(0,Xn,i+1)︸ ︷︷ ︸
holding cost

+ cp max(0, − Xn,i+1)︸ ︷︷ ︸
penalty cost

}

Special case of the sum Sn with m = 1 and one-period cost functions as above
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Motivating examples Dynamic inventory management

Dynamic inventory management II

Optimal policy: This is a policy π∗n such that E[Cn(π∗n )] = inf
πn

E[Cn(πn)] which is

based on state and the time dependent order-up-to levels.

Optimal order-up-to levels (Bulinskaya, 1964):

a

(
cp − c

ch + cp

)
= s1 ≤ s2 ≤ · · · ≤ sn ≤ a

(
cp

ch + cp

)

such that the optimal order-up-to function

γ∗n,i (x) =

{
sn−i+1 if x ≤ sn−i+1

x if x > sn−i+1

What are we after? Asymptotic normality of Cn(π∗n ) as n→∞ after the usual
centering and scaling

I Uniform demand is not key: unimodal densities with bounded support suffice

I Instantaneous fulfillment is not key: (some random) lead times can be accommodated
(Arlotto and S., 2017)
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Dobrushin’s CLT and failure of state-space enlargement The minimal ergodic coefficient

The minimal ergodic coefficient

Dobrushin contraction coefficient: Given a Markov transition kernel K ≡ K(x , dy)
on X , the Dobrushin contraction coefficient of K is given by

δ(K) = sup
x1,x2∈X

||K(x1, ·)− K(x2, ·)||TV = sup
x1,x2∈X
B∈B(X )

|K(x1,B)− K(x2,B)|

Ergodic coefficient:
α(K) = 1− δ(K)

Minimal ergodic coefficient: Given a time non-homogeneous Markov chain
{X̂n,i : 1 ≤ i ≤ n} one has the Markov transition kernels

K
(n)
i,i+1(x ,B) = P(X̂n,i+1 ∈ B | X̂n,i = x), 1 ≤ i < n,

and the minimal ergodic coefficient is given by

αn = min
1≤i<n

α(K
(n)
i,i+1)
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Dobrushin’s CLT and failure of state-space enlargement Dobrushin’s CLT

A building block: Dobrushin’s central limit theorem

Theorem (Dobrushin, 1956; see also Sethuraman and Varadhan, 2005)

For each n ≥ 1, let {X̂n,i : 1 ≤ i ≤ n} be n observations of a non-homogeneous Markov
chain. If

Sn =
n∑

i=1

fn,i (X̂n,i )

and if there are constants C1,C2, . . . such that

max
1≤i≤n

||fn,i ||∞ ≤ Cn and lim
n→∞

C 2
n

α3
n

(∑n
i=1 Var[fn,i (X̂n,i )]

) = 0,

then one has the convergence in distribution

Sn − E[Sn]√
Var[Sn]

=⇒ N(0, 1), as n→∞

Role of the minimal ergodic coefficient αn
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Dobrushin’s CLT and failure of state-space enlargement Dobrushin’s CLT

Dobrushin’s CLT and Bulinskaya’s inventory control problem

Mean-optimal inventory costs:

Cn(π∗n ) =
n∑

i=1

{
c(γ∗n,i (Xn,i )− Xn,i ) + ch max(0,Xn,i+1) + cp max(0,−Xn,i+1)

}
State-space enlargement: define the bivariate chain

{ X̂n,i = (Xn,i ,Xn,i+1) : 1 ≤ i ≤ n }

Transition kernel of X̂n,i :

K
(n)
i,i+1((x , y),B × B ′) = P(Xn,i+1 ∈ B,Xn,i+2 ∈ B ′ |Xn,i = x ,Xn,i+1 = y)

= 1(y ∈ B)P(Xn,i+2 ∈ B ′ |Xn,i+1 = y)

Degeneracy: if y ∈ B and y ′ ∈ Bc one has

K
(n)
i,i+1((x , y),B ×X )− K

(n)
i,i+1((x , y ′),B ×X ) = 1,

so the minimal ergodic coefficient is given by

αn = 1− max
1≤i<n

{
sup

(x,y),(x′,y′)

||K (n)
i,i+1((x , y), · )− K

(n)
i,i+1((x ′, y ′), · )||TV

}
= 0
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MDP Focused Central Limit Theorem MDP Focused Markov Additive CLT

MDP Focused Markov Additive CLT

Theorem (Arlotto and S., MOOR, 2016)

For each n ≥ 1, let {Xn,i : 1 ≤ i ≤ n + m} be n + m observations of a non-homogeneous
Markov chain. If

Sn =
n∑

i=1

fn,i (Xn,i , . . . ,Xn,i+m)

and if there are constants C1,C2, . . . such that

max
1≤i≤n

||fn,i ||∞ ≤ Cn and lim
n→∞

C 2
n

α2
nVar[Sn]

= 0,

then one has the convergence in distribution

Sn − E[Sn]√
Var[Sn]

=⇒ N(0, 1), as n→∞

Easy corollary: If the Cn’s are uniformly bounded and if the minimal ergodic coefficient
αn is bounded away from zero (i.e. αn ≥ c > 0 for all n), then one just needs to show

Var[Sn]→∞ as n→∞
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MDP Focused Central Limit Theorem Comparison of conditions

On m = 0 vs m > 0

The asymptotic condition in Dobrushin’s CLT imposes a condition on the sum of the
individual variances

lim
n→∞

C 2
n

α3
n

(∑n
i=1 Var[fn,i (X̂n,i )]

) = 0

Our CLT however imposes a condition on the variance of the sum

lim
n→∞

C 2
n

α2
nVar[Sn]

= 0

Variance lower bound : when m = 0 the two quantities are connected via the
inequality

Var[Sn] ≥ αn

4

n∑
i=1

Var[fn,i (Xn,i )]

and our asymptotic condition is weaker

Counterexample for m > 0: when m > 0 the variance lower bound fails
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MDP Focused Central Limit Theorem Counterexample to variance lower bound

Counterexample to variance lower bound when m = 1

Fix m = 1 and let Xn,1,Xn,2, . . . ,Xn,n+1 be i.i.d. with 0 < Var[Xn,1] <∞
By independence, the minimal ergodic coefficient αn = 1

For 1 ≤ i ≤ n consider the functions

fn,i (x , y) =

{
x if i is even

−y if i is odd;

and let Sn =
n∑

i=1

fn,i (Xn,i ,Xn,i+1)

For each n ≥ 0 one has that

S2n = 0 and S2n+1 = −X2n+1,2(n+1)

so the variance
Var[Sn] = O(1) for all n ≥ 1

On the other hand, the sum of the individual variances

n∑
i=1

Var[fn,i (Xn,i ,Xn,i+1)] = nVar[Xn,1]
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MDP Focused Central Limit Theorem Back to the Inventory Example

MDP Focused CLT Applied to an Inventory Problem

Theorem (Arlotto and S., MOOR, 2016)

For each n ≥ 1, let {Xn,i : 1 ≤ i ≤ n + m} be n + m observations of a non-homogeneous
Markov chain. If

Sn =
n∑

i=1

fn,i (Xn,i , . . . ,Xn,i+m)

and if there are constants C1,C2, . . . such that

max
1≤i≤n

||fn,i ||∞ ≤ Cn and lim
n→∞

C 2
n

α2
nVar[Sn]

= 0,

then one has the convergence in distribution

Sn − E[Sn]√
Var[Sn]

=⇒ N(0, 1), as n→∞

Easy corollary: If the Cn’s are uniformly bounded and if the minimal ergodic coefficient
αn is bounded away from zero (i.e. αn ≥ c > 0 for all n), then one just needs to show

Var[Sn]→∞ as n→∞
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MDP Focused Central Limit Theorem Back to the Inventory Example

The CLT Applied to the Inventory Management Problem

Dynamic Inventory Management: It is always optimal to order a positive quantity if the
inventory on-hand drops below a level s1 > 0

Minimal ergodic coefficient lower bound: αn ≥
s1

a
for all n ≥ 1

Variance lower bound: Var[Cn(π∗n )] ≥ K(s1)n

Asymptotic Gaussian law: as n→∞

Cn(π∗n )− E[Cn(π∗n )]√
Var[Cn(π∗n )]

=⇒ N(0, 1)
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Conclusions

Summary

Main Message: One need not feel too guilty applying mean-focused MDP tools.
We know they seem to work in practice, and there is a growing body of knowledge
that helps to explain why they work.

First: In a rich class of problems, there are a priori bounds on the variance that are
given in terms of the mean reward and the bound on the individual rewards.

Three simple properties characterize this class.

Second: When more information is available on the Markov chain of decision states
and post-decision reward functions, one has good prospects for a Central Limit
Theorem.

Application of the MDP focused CLT is not work-free. Nevertheless, because of the
MDP focus, one has a much shorter path to a CLT than one could realistically
expect otherwise. At a minimum, we know reasonably succinct sufficient conditions
for a CLT.

J.M. Steele (Wharton) MDPs Beyond One’s Means April 6, 2017 41



Thank you!
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Proof Detail: MDPs where Means Bound Variances Proof Details

Bounding the variance by the mean: proof details

The martingale difference

dt = Mt −Mt−1 = r(t,Xt ,Yt ,A
∗
t ) + vt+1(Xt+1)− vt(Xt)

Add and subtract vt+1(Xt) to obtain

dt = vt+1(Xt)− vt(Xt)

+ r(t,Xt ,Yt ,A
∗
t ) + vt+1(X ∗t+1)− vt+1(Xt)

Recall: Xt is Ft−1-measurable

Hence, αt is Ft−1-measurable and αt = −E[βt | Ft−1], so

E[d2
t | Ft−1] = E[β2

t | Ft−1] + 2αtE[βt | Ft−1] + α2
t = E[β2

t | Ft−1]− α2
t

Since α2
t ≥ 0 and βt ≤ r(t,Xt ,Yt ,A

∗
t )

E[d2
t | Ft−1] ≤ E[β2

t | Ft−1] ≤ K E[r(t,Xt ,Yt ,A
∗
t ) | Ft−1]

Back to Proof Sketch
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Proof Detail: MDPs where Means Bound Variances Proof

Bounding the variance by the mean: proof sketch

For 0 ≤ t ≤ n, the process

Mt = Rt(π
∗
n ) + vt+1(Xt+1)

is a martingale with respect to the natural filtration Ft = σ{Y1, . . . ,Yt}

M0 = E[Rn(π∗n )] and Mn = Rn(π∗n )

For dt = Mt −Mt−1,

Var[Mn] = Var [Rn(π∗n )] = E

[
n∑

t=1

d2
t

]

“Some rearranging” and an application of reward non-negativity and boundedness,
existence of a do-nothing action, and optimal action monotonicity gives

E[d2
t | Ft−1] ≤ K E[r(t,Xt ,Yt ,A

∗
t ) | Ft−1]

Taking total expectations and summing gives

Var [Rn(π∗n )] ≤ K E [Rn(π∗n )]

Crucial here: Xt+1 = f (t,Xt ,Yt ,At) is Ft-measurable!
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Proof Detail: MDPs where Means Bound Variances Proof

Bounding the variance by the mean: proof details

The martingale difference

dt = Mt −Mt−1 = r(t,Xt ,Yt ,A
∗
t ) + vt+1(Xt+1)− vt(Xt)

Add and subtract vt+1(Xt) to obtain

dt =

αt︷ ︸︸ ︷
vt+1(Xt)− vt(Xt)

+ r(t,Xt ,Yt ,A
∗
t ) + vt+1(Xt+1)− vt+1(Xt)︸ ︷︷ ︸

βt

Recall: Xt is Ft−1-measurable

Hence, αt is Ft−1-measurable and αt = −E[βt | Ft−1], so

E[d2
t | Ft−1] = E[β2

t | Ft−1] + 2αtE[βt | Ft−1] + α2
t = E[β2

t | Ft−1]− α2
t

Since α2
t ≥ 0 and βt ≤ r(t,Xt ,Yt ,A

∗
t )

E[d2
t | Ft−1] ≤ E[β2

t | Ft−1] ≤ K E[r(t,Xt ,Yt ,A
∗
t ) | Ft−1]
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Proof Detail: MDPs where Means Bound Variances Uniform boundedness

Remark (Uniform Boundedness)

The Variance Bound still holds if there is a constant K <∞ such that

E[r 2(t,Xt ,Yt ,A
∗
t )] ≤ KE[r(t,Xt ,Yt ,A

∗
t )]

uniformly in t.
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Proof Detail: MDPs where Means Bound Variances Bounded martingale differences

Remark (Bounded Differences Martingale)

The Bellman martingale has bounded differences. In fact we also have that

|dt | = |Mt −Mt−1| = |αt + βt | ≤ K

for all 1 ≤ t ≤ n.
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